

# Environmental ambition: scope, stringency, and policy mix

Life – Dicet

Herman Vollebergh

Tilburg University & Netherlands Environmental Assessment Agency





# Carbon Sorrow

- Economists always know better
  - just weigh goals and instruments in a grand CBA and we all know what to d
- Do we?
  - Real world copes with yellow jackets, climate skeptics and what else?
- Simple solution!
  - You know what, just put a price on cal and return the revenue!
- Is it that simple?





#### Carbon transition

JNIVERSITY

TILBURG

- Key aim: transition to a carbon neutral economy
  - Carbon is at the core of fossil fuel era
  - Neutrality equires a very deep change of economic system: leap frogging
  - Examples: electricity generation, industries
- Transition: system wide change based on a pre-anounced goal with timepath
  - Example: EU 2050 goal for carbon neutrality
- System change requires more than just a simple carbon tax
  - From dirty to clean production and consumption
  - Lock-in fossil fuel era (see e.g. Acemoglu et al., 2012)

#### Carbon transition in the mix

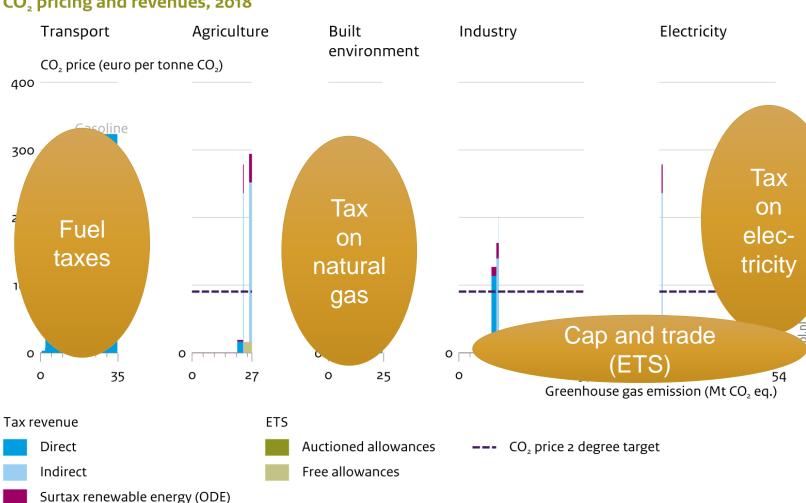
- Carbon pricing for primary failure of the system
  - e.g. ETS sectors using ETS
  - Non-ETS through energy taxes and other policies (standards)
- Supplementary policy for failure in knowledge market
  - Innovation spillovers (both R&D and diffusion)
  - Lock-in fossil (bias knowledge stock and 'sunk cost')
- Suplementary policy for other problems
  - State support (healthy functioning of markets)
  - Limited coordination energy policy (e.g. in the EU)
  - Networks and infrastructure





## **Careful Carbon Pricing**

- Key elements in instrument choice design of transitions:
  - Factoring in all aspects of choice behavior (motives, prices, constraints, uncertainty)
- Criteria for evaluation should take stock of the role of design and context ('the devil is in the detail'):
  - Aim: does the instrument target the operational goal?
  - Scope: how much of the regulatory base is addressed?
  - Price: what price for the un(der)priced scarce resource is aimed for?
  - Timing: when is the instrument implemented?
  - Interaction: role of other (overlapping) instruments and policies




# Example: carbon pricing in the Netherlands

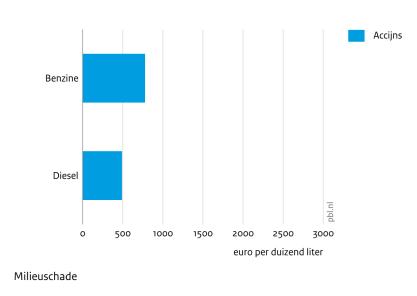
Source: PBL

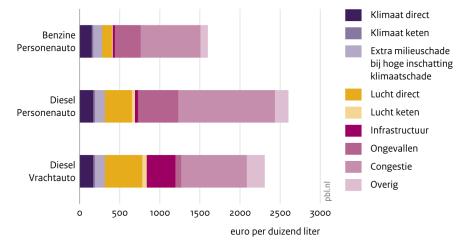
- Use effective carbon taxes and prices (OECD) for proper picture
  - Implicit prices through existing excises: mainly non-ETS; coordinated by EU minimum taxes
  - Explicit prices through capand-trade (ETS)
- Complicated?





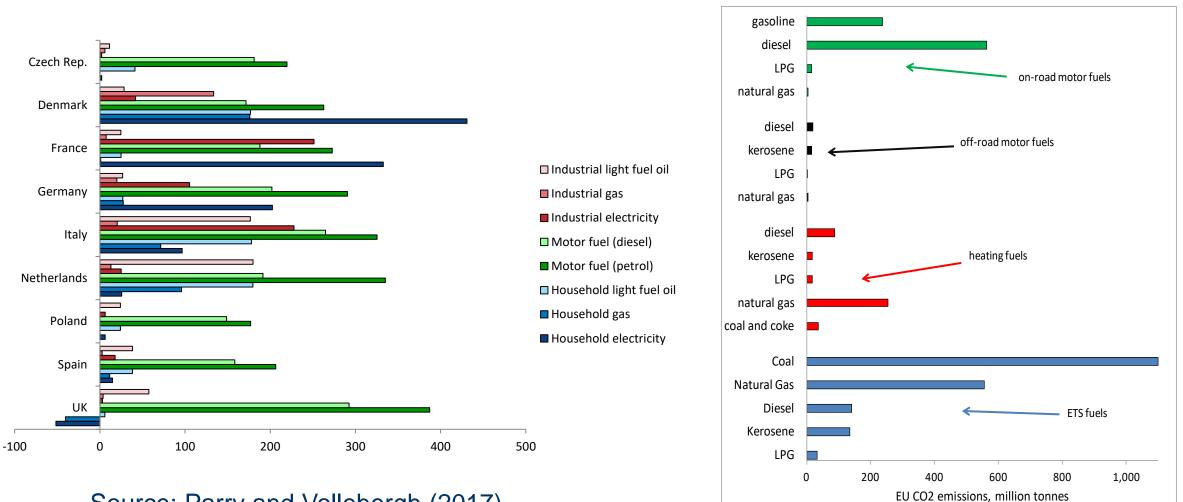
#### CO, pricing and revenues, 2018


#### Example: carbon pricing in the Netherlands


- Economist: just use a simple uniform tax rule as the solution!
- Yes?
- The real world consists of multiple externalities but not always multiple instruments
- No simple solutions!
  Economist should be careful not to contribute to the fuzz!






Belastingen





7

#### Example: energy taxation in the EU



Source: Parry and Vollebergh (2017)



# Careful design of carbon pricing necessary

- Additional uniform taxes in Europe may cause inefficiency
  - Cap and trade already exists in ETS sectors
    - Additional tax crowds out cap-and-trade
  - Existing implicit taxes (usually in non-ETS sectors) may already be too high
- Uniform prices (ETS price + tax) helpful only if they take stock of existing role of ETS and the role of other externalities
  - Hybrid schemes: ETS vs taxes in non-ETS
  - ETS is on emissions while taxes are on inputs (mainly gas and electricity)



|     | EU-ETS                              | EU Energy taxes                                         |
|-----|-------------------------------------|---------------------------------------------------------|
| Aim | CO <sub>2</sub> -emission reduction | CO <sub>2</sub> reduction, air quality, congestion, etc |



|       | EU-ETS                                                          | EU Energy taxes                                         |
|-------|-----------------------------------------------------------------|---------------------------------------------------------|
| Aim   | CO <sub>2</sub> -emission reduction                             | CO <sub>2</sub> reduction, air quality, congestion, etc |
| Scope | 50% CO <sub>2</sub> -emissions (Large emitters only + aviation) | Small emitters<br>Scattered picture across fuels        |



|       | EU-ETS                                                          | EU Energy taxes                                         |
|-------|-----------------------------------------------------------------|---------------------------------------------------------|
| Aim   | CO <sub>2</sub> -emission reduction                             | CO <sub>2</sub> reduction, air quality, congestion, etc |
| Scope | 50% CO <sub>2</sub> -emissions (Large emitters only + aviation) | Small emitters<br>Scattered picture across fuels        |
| Price | Market (below SCC)<br>Market stability reserve                  | Minimum tax rates<br>Above/below SCC                    |



|        | EU-ETS                                                          | EU Energy taxes                                         |
|--------|-----------------------------------------------------------------|---------------------------------------------------------|
| Aim    | CO <sub>2</sub> -emission reduction                             | CO <sub>2</sub> reduction, air quality, congestion, etc |
| Scope  | 50% CO <sub>2</sub> -emissions (Large emitters only + aviation) | Small emitters<br>Scattered picture across fuels        |
| Price  | Market (below SCC)<br>Market stability reserve                  | Minimum tax rates<br>Above/below SCC                    |
| Timing | Gradual decline towards 2057                                    | Changes subject to political decision (unless indexed)  |



|         | EU-ETS                                                          | EU Energy taxes                                         |
|---------|-----------------------------------------------------------------|---------------------------------------------------------|
| Aim     | CO <sub>2</sub> -emission reduction                             | CO <sub>2</sub> reduction, air quality, congestion, etc |
| Scope   | 50% CO <sub>2</sub> -emissions (Large emitters only + aviation) | Small emitters<br>Scattered picture across fuels        |
| Price   | Market (below SCC)<br>Market stability reserve                  | Minimum tax rates<br>Above/below SCC                    |
| Timing  | Gradual decline towards 2057                                    | Changes subject to political decision (unless indexed)  |
| Overlap | Not any more (CDM)                                              | Yes (both tax bases and rates)                          |



# Lessons for design of pricing primary system failure

- Price base (aim and scope) of different types of pricing instruments key element
  - ETS usually part of wider pricing scheme (role of energy or implicit carbon taxes) Lesson 1: Pigovian gap analysis should check carbon price base properly
- Levels of indirect carbon prices (e.g. 'energy' tax rate) should also factor in other externalities properly

Lesson 2: Pigovian gap analysis of price should also account for other externalities relevant for the tax base

• PM Interaction with instruments to address secondary failure (subsidies)



|         | EU-ETS                                            | Key design element                                                    |
|---------|---------------------------------------------------|-----------------------------------------------------------------------|
| Aim     | Reduction CO <sub>2</sub> -emission               | Absolute cap reducing CO <sub>2</sub> emissions to 0 in 2057          |
| Scope   | 50% $CO_2$ -emissions (Large emitters + aviation) | Installations above 20MW everywhere in EU                             |
| Price   | Market (below SCC)<br>Market stability reserve    | Interemporal flexibiity<br>Banking policy rules to steer carbon price |
| Timing  | Gradual decline towards 2057 (political decision) | Overall linear reduction factor of 2.2% each year                     |
| Overlap | No                                                | CDM option in the past                                                |

• Reference point: EU ETS design



#### Linking issues: key concerns

- Key concerns:
  - 1. Efficiency gains
  - 2. Design differences between ETS systems
  - 3. Role of overlapping (other) instruments with ETS

Ad 1. Efficiency gains: to what extent does a broader global market coverage offer global welfare gains?

Linking could provide a more comprehensive level playing field and cost reductions, but at what costs?

Example 1: credibility of CDM

Example 2: lower price also reduces (innovation) incentives



Ad 2. Design differences ETS systems: what are implications of differences in aim, scope, price, timing and overlapping (linked) instruments?

Differences may backfire:

Example 1: absolute vs relative targets

Example 2: flexibility provisions (intertemporal, price floors vs MSR)

#### Ad 3. Overlapping (other) instruments:

To what extent do overlapping instruments (taxes, subsidies) create positive or negative spillovers?

Example: Leakage concerns of local subsidies for innovative CO<sub>2</sub>-abatement technologies



# Careful carbon pricing

- Pros and cons of linking ETS systems requires a careful analysis of consequences of design differences
- Role of ETS should be linked to the wider Pigovian gap analysis of carbon pricing in general
  - Should also include (differences in) local carbon and energy taxes and other externalities
- Role of ETS should also be considered in the broader perspective of instrument choice for transitions
  - Should also include secondary market failure and its interaction



#### Some literature on carbon pricing

- Fell, Hintermann and Vollebergh (2015) *Carbon Content of Electricity Futures in Phase II of the EU ETS*, The Energy Journal, 2015, 36, 4
- Sen, Vollebergh & Harding (2016), Energy taxation in OECD countries: Effective tax rates across countries, users, and fuels, in J. Strand (ed), Economics and Political Economy of Energy Subsidies, MIT Press
- Brink, Vollebergh & van der Werf (2016), *Carbon pricing in the EU: Evaluation of different EU ETS reform options*, Energy Policy, 97, 603-617.
- Parry and Vollebergh (2017), Reforming the EU Energy Tax Directive: Assessing the Options, in: K. Pittel, I. Parry & H. Vollebergh (eds), Energy Tax and Regulatory Policy in Europe, MIT Press
- Sen and Vollebergh (2018), The Effectiveness of Taxing Carbon Content of Energy Consumption, Journal of Environmental Economics and Management, 92, 74-99

